Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nano Res ; : 1-20, 2022 Jul 06.
Article in English | MEDLINE | ID: covidwho-2246720

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is still rampant all over the world, causing incalculable losses to the world. Major pharmaceutical organizations around the globe are focusing on vaccine research and drug development to prevent further damage caused by the pandemic. The messenger RNA (mRNA) technology has got ample of attention after the success of the two very effective mRNA vaccines during the recent pandemic of COVID-19. mRNA vaccine has been promoted to the core stage of pharmaceutical industry, and the rapid development of mRNA technology has exceeded expectations. Beyond COVID-19, the mRNA vaccine has been tested for various infectious diseases and undergoing clinical trials. Due to the ability of constant mutation, the viral infections demand abrupt responses and immediate production, and therefore mRNA-based technology offers best answers to sudden outbreaks. The need for mRNA-based vaccine became more obvious due to the recent emergence of new Omicron variant. In this review, we summarized the unique properties of mRNA-based vaccines for infectious diseases, delivery technologies, discussed current challenges, and highlighted the prospects of this promising technology in the future. We also discussed various clinical studies as well preclinical studies conducted on mRNA therapeutics for diverse infectious diseases.

2.
Acc Chem Res ; 56(3): 224-236, 2023 02 07.
Article in English | MEDLINE | ID: covidwho-2185418

ABSTRACT

The outbreak of the coronavirus disease 2019 (COVID-19) pandemic and swift approval of two mRNA vaccines have put nucleic acid therapeutics in the spotlight of both the scientific community and the general public. Actually, in addition to mRNAs, multiple nucleic acid therapeutics have been successively commercialized over the past few years. The rapid development of nucleic acid drugs not only demonstrates their superior potency but also marks a new era of the field. Compared with conventional treatments targeting proteins rather than the root causes of diseases at the genetic level, nucleic acids are capable of achieving long-standing or even curative effects against undruggable disorders by modulating gene expression via inhibition, editing, addition, or replacement. This offers a terrific arsenal for expanding therapeutic access to diseases lacking current treatment options and developing vaccines to provide swift responses to emerging global health threats.Despite the stunning success and recent resurgence of interest in the field, the unfavorable physicochemical characteristics (i.e., the negative charge, large molecular weight, and hydrophilicity), susceptibility to nuclease degradation, off-target toxicity, and immunogenicity are a brake for moving nucleic acid therapeutics from bench to bedside. Currently, developing technologies to improve the circulation stability, targeting affinity, cellular entry, endolysosomal escape, efficacy, and safety of nucleic acid drugs still remains a major pharmaceutical bottleneck.In this Account, we outline the research efforts from our group on the development of technology platforms to overcome the pharmaceutical bottlenecks for nucleic acid therapeutics. We have engineered a variety of intelligent delivery platforms such as synthetic nanomaterials (i.e., lipid nanoparticles, polymers, and inorganic nanoparticles), physical delivery methods (i.e., electroporation), and naturally derived vehicles (i.e., extracellular vesicles), aiming at endowing nucleic acids with improved circulation stability, targeting affinity, and cellular internalization (Get in) and stimuli responsive endolysosomal escape capability (Get out). Moreover, we will discuss our progress in developing a series of modification strategies for sequence engineering of nucleic acids to endow them with enhanced nuclease resistance, translation efficiency, and potency while alleviating their off-target toxicity and immunogenicity (Sequence engineering). Integrating these technologies may promote the development of nucleic acid therapeutics with potent efficacy and improved safety (Efficacy & safety). With this Account, we hope to offer insights into rational design of cutting-edge nucleic acid therapeutic platforms. We believe that the continuing advances in nucleic acid technologies together with academic-industry collaborations in the clinic, will promise to usher in more clinically translatable nucleic acid therapeutics in the foreseeable future.


Subject(s)
COVID-19 , Nanostructures , Humans , Proteins , RNA, Messenger , Drug Development
3.
J Control Release ; 345: 314-333, 2022 05.
Article in English | MEDLINE | ID: covidwho-2049427

ABSTRACT

Since its outbreak in late 2019, the novel coronavirus disease 2019 (COVID-19) has spread to every continent on the planet. The global pandemic has affected human health and socioeconomic status around the world. At first, the global response to the pandemic was to isolate afflicted individuals to prevent the virus from spreading, while vaccine development was ongoing. The genome sequence was first presented in early January 2020, and the phase I clinical trial of the vaccine started in March 2020 in the United States using novel lipid-based nanoparticle (LNP), encapsulated with mRNA termed as mRNA-1273. Till now, various mRNA-based vaccines are in development, while one mRNA-based vaccine got market approval from US-FDA for the prevention of COVID-19. Previously, mRNA-based vaccines were thought to be difficult to develop, but the current development is a significant accomplishment. However, widespread production and global availability of mRNA-based vaccinations to combat the COVID-19 pandemic remains a major challenge, especially when the mutations continually occur on the virus (e.g., the recent outbreaks of Omicron variant). This review elaborately discusses the COVID-19 pandemic, the biology of SARS-CoV-2 and the progress of mRNA-based vaccines. Moreover, the review also highlighted a detailed description of mRNA delivery technologies and the application potential in controlling other life-threatening diseases. Therefore, it provides a comprehensive view and multidisciplinary insights into mRNA therapy for broader audiences.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Pandemics/prevention & control , RNA, Messenger/genetics , SARS-CoV-2/genetics , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
4.
Nano Today ; 44: 101468, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1851861

ABSTRACT

While gold compound have been approved for Rheumatoid arthritis treatment as it well suppresses inflammatory cytokines of patients, no such treatment is currently available for COVID-19 treatment in vivo . We firstly disclose gold cluster yields better therapeutic outcome than Remdesivir in COVID-19 hamster treatments as it is armed with direct inhibition viral replication and intrinsic suppression inflammatory cytokines expression. Crystal data reveals that Au (I), released from gold cluster (GA), covalently binds thiolate of Cys145 of SARS-CoV-2 Mpro. GA directly decreases SARS-CoV-2 viral replication and intrinsically down-regulates NFκB pathway therefore significantly inhibiting expression of inflammatory cytokines in cells. The inflammatory cytokines in GA-treated COVID-19 transgenic mice are found to be significantly lower than that of control mice. When COVID-19 golden hamsters are treated by GA, the lung inflammatory cytokines levels are significantly lower than that of Remdesivir. The pathological results show that GA treatment significantly reduce lung inflammatory injuries when compared to that of Remdesivir-treated COVID-19 hamsters.

5.
Nano today ; 2022.
Article in English | EuropePMC | ID: covidwho-1749472

ABSTRACT

While gold compound have been approved for Rheumatoid arthritis treatment as it well suppresses inflammatory cytokines of patients, no such treatment is currently available for COVID-19 treatment in vivo. We firstly disclose gold cluster yields better therapeutic outcome than Remdesivir in COVID-19 hamster treatments as it is armed with direct inhibition viral replication and intrinsic suppression inflammatory cytokines expression. Crystal data reveals that Au (I), released from gold cluster (GA), covalently binds thiolate of Cys145 of SARS-CoV-2 Mpro. GA directly decreases SARS-CoV-2 viral replication and intrinsically down-regulates NFκB pathway therefore significantly inhibiting expression of inflammatory cytokines in cells. The inflammatory cytokines in GA-treated COVID-19 transgenic mice are found to be significantly lower than that of control mice. When COVID-19 golden hamsters are treated by GA, the lung inflammatory cytokines levels are significantly lower than that of Remdesivir. The pathological results show that GA treatment significantly reduce lung inflammatory injuries when compared to that of Remdesivir-treated COVID-19 hamsters. Graphical

6.
Nano Res ; 15(3): 2196-2225, 2022.
Article in English | MEDLINE | ID: covidwho-1471837

ABSTRACT

Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1-100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL